L'ADN électromagnétique et la communication entre cellules
L'ADN électromagnétique et la communication entre cellules
Alain Boudet
Dr en Sciences Physiques
- 1. La molécule d'ADN et le code génétique
- 2. L'ADN et ses modes d'expression
- 3. Architecture et structure de l'ADN
- 4. La musique de l'ADN et des protéines
- 5. L'ADN électrique
- 6. L'ADN électromagnétique
Résumé: Depuis une centaine d'années, des scientifiques de plusieurs pays (Gurwitsch, Kaznacheev, Gariaev, Inaba, Popp, et d'autres) ont montré que les organismes vivants émettent de la lumière (biophotons) à très faible intensité. Tel un laser, l'ADN est à la fois la source et le lieu de stockage de ces photons. L'ensemble des biophotons de l'organisme constitue un champ cohérent porteur d'information, sous forme d'hologrammes, qui dirige les processus vitaux de l'organisme et maintient son intégrité. Grâce à ces rayonnements, les cellules communiquent entre elles et envoient des informations sur leur état énergétique et sanitaire. D'autres informations constituent un code génétique électromagnétique holographique qui assure et coordonne le développement de l'organisme. Cela explique des phénomènes inexplicables par la génétique moléculaire comme la différentiation des cellules. Des applications pratiques de ce phénomène ont été conçues pour évaluer la qualité des aliments et améliorer l'état de santé des êtres vivants par des techniques non destructrices.
Depuis la découverte de l'ADN dans les années 1950, sa présence dans le noyau de nos cellules est bien connue, ainsi que sa fonction comme support du code génétique (voir première partie, La molécule d'ADN et le code génétique). Les enseignements universitaires et les médias diffusent abondamment les représentations de la constitution chimique et de la structure de cette molécule, faites de 2 brins enroulés en une double hélice. Pourtant, ce n'est là qu'un aspect limité de l'ADN.
Dans les articles 2 et 3 de cette série, j'ai présenté des descriptions complémentaires qui montrent que l'expression du code génétique est sous le contrôle d'autres facteurs et que son rôle doit être nuancé. Ces études novatrices sont toutefois encore issues de la représentation habituelle moléculaire de l'ADN et des gènes.
Dans le 5e article de cette série, dépassant ce cadre, nous avons découvert la constitution électrique de l'ADN. Une molécule y est vue comme un assemblage d'atomes où chaque atome est constitué d'un noyau chargé d'électricité positive et d'électrons de charge négative qui gravitent autour. Une molécule est donc un volume plein d'électricité. Cette électricité est responsable des interactions d'attirance et de rejet entre molécules. Nous avons décrit ces influences électriques dans leur aspect statique ou stationnaire.
Dans le présent article, nous poursuivons la description de la nature électrique de la molécule d'ADN, cette fois dans son aspect dynamique, producteur de rayons électromagnétiques et d'échanges entre les atomes et les molécules. Nous montrons comment par ces échanges les molécules reçoivent et émettent des informations et comment certaines de ces informations constituent un code génétique complémentaire de nature électromagnétique.
La matière émet des rayons électromagnétiques
La science physique a établi que toute matière est constituée d'atomes dont la position peut être fixe comme dans les solides, ou en mouvement comme dans les liquides et les gaz (voir Géométrie cristalline). Elle précise que dans les solides, la position fixe n'est qu'une moyenne et que les atomes oscillent autour de cette position moyenne. Ils sont en perpétuelle vibration. La matière, bien loin d'être inerte, est le siège de mouvements intenses de ses atomes et des charges électriques dont ils sont constitués. De ce fait, elle émet en permanence un ensemble de rayonnements électromagnétiques de fréquences variées.
Les atomes vibrent plus ou moins fortement selon leur température. On peut même dire que c'est la force de cette vibration qui crée la chaleur. Par sa température même, tout objet est émetteur de rayonnements calorifiques. Ce sont des rayonnements électromagnétiques dont les fréquences sont situées dans la gamme de l'infrarouge, ce qui signifie qu'elles sont inférieures à celles du rouge visible. Un exemple commun est celui des chauffages électriques à réglettes qui chauffent en émettant de la lumière infra-rouge non visible, accompagnée d'un peu de lumière rouge. On les voit donc rougir quand ils chauffent.
De même, les organismes vivants à sang chaud, animaux et corps humains, produisent leur propre chaleur interne qui rayonne tout autour de leur peau. De ce fait, ils émettent des rayons infrarouges. On peut les détecter à distance avec des lunettes détecteurs d'infrarouges et on peut ainsi photographier les corps chauds la nuit avec une caméra à sensibilité infrarouge. Cela indique que les rayons infrarouges émis parviennent au moins jusqu'à la caméra. Ils sont bien réels et très courants.
Aussi, énoncer que la matière émet de la lumière et d'autres rayons électromagnétiques n'a rien de nouveau ni de surprenant. Cela n'empêche pas de s'en émerveiller. Sous l'effet de la chaleur, les atomes vibrent indépendamment les uns des autres de sorte que les rayons émis ne sont ni coordonnés ni synchronisés les uns avec les autres. On dit que ces rayonnements sont incohérents. Ils sont comme une multitude de personnes dans une foule qui parlent indépendamment les unes des autres et créent un brouhaha.
Or, depuis environ une centaine d'années, des chercheurs ont découvert que les organismes vivants émettent également des rayonnements cohérents ou partiellement cohérents, comme des chanteurs qui participent à la même œuvre musicale. Bien que les rayons proviennent de différents groupes d'atomes, et de différentes cellules, ils sont coordonnés et synchronisés. C'est ce caractère de cohérence, ou si vous préférez, de coordination, qui est remarquable et novateur. En réalité, il a été signalé dès les années 1920, mais il n'a pas reçu d'audience large, y compris auprès de la plupart des scientifiques. L'objet de cet article est de contribuer à combler cette lacune, dans une modeste mesure, en puisant dans les écrits d'auteurs spécialisés et assez difficiles à comprendre, auxquels j'ai emprunté.
Voici l'histoire de la découverte des rayonnements électromagnétiques cohérents dans les organismes vivants.